Palladium-Catalyzed Domino Addition and Cyclization of Arylboronic Acids with 3-Hydroxyprop-1-yn-1-yl Phosphonates Leading to 1,2-Oxaphospholenes

Ye Lv,[†] Gaobo Hu,[‡] Dumei Ma,[§] Liu Liu,[‡] Yuxing Gao,^{*,‡} and Yufen Zhao^{†,‡}

[†]Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China

[‡]Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China [§]Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China

Supporting Information

ABSTRACT: A novel and efficient palladium-catalyzed domino addition—cyclization of a wide range of arylboronic acids with various 3-hydroxyprop-1-yn-1-yl phosphonates has been developed, affording a convenient and powerful tool for the preparation of valuable 1,2-oxaphospholenes with mild reaction conditions, broad substrate applicability, and good to excellent yields. Mechanistic studies revealed that the reaction might involve Michael addition and nucleophilic substitution.

P hosphorus-containing heterocycles have attracted significant attention to synthetic chemists over the past several decades due to their unusual structural features and their association with diverse biological activities and unique properties.¹ Among them, 1,2-oxaphosphole-3-ene 2-oxide derivatives have received considerable interests owing to their wide-ranging biological properties such as antimicrobial activity,² cytotoxicity and genotoxicity,³ and antiviral activity.⁴ In addition, 1,2-oxaphosphole-3-ene 2-oxides are also an important class of versatile precursors for the preparation of various valuable organophosphorous derivatives,⁵ especially for 1,2-oxaphospholane 2-oxides through an addition or reduction reaction (Scheme 1), which exhibit numerous interesting

Scheme 1. Structure of 1,2-Oxaphospholene and 1,2-Oxaphospholane 2-Oxide

biological activities as carbohydrate mimics.⁶ However, there have been only a few reports of the synthesis of 1,2-oxaphosphole-3-ene 2-oxides.⁷ In 2001 and 2003, Lee reported two protocols for the preparation of 1,2-oxaphosphole-3-ene 2-oxides through using complicated 2-organyltelluro-1-alkenl-phosphonate and an air-sensitive Grignard reagent in a two-step process^{7f} or treatment of α -acylallylphosphonates which were

difficult to obtain with *m*-CPBA in the presence of MgSO₄.⁵ In 2007, Ma and co-workers developed a cyclization-Heck reaction of monoesters of 1,2-allenyl phosphonic acids with alkenes leading to 1,2-oxaphosphole-3-ene 2-oxide derivatives.^{7g} Despite their usefulness, almost all of these methods have common problems such as uncommon reactants, excess reagents, poor substrate scope, relatively strict reaction conditions, multistep reactions, or lower yields, thus increasing the cost and limiting their applications. As part of our ongoing endeavors to develop the new methods for the synthesis of organic phosphorus compounds,⁸ we herein revealed the first example of a single-step preparation of valuable 1,2-oxaphosphole-3-ene 2-oxides through a facile and efficient Pd-catalyzed domino addition-cyclization reaction of various readily available arylboronic acids with 3-hydroxyprop-1-yn-1-yl phosphonates, which could be conveniently prepared by using our recently reported method,⁹ with broad substrate applicability, mild reaction conditions, and good to excellent yields.

Initially, to investigate the feasibility of the present reaction, diethyl (3-hydroxyprop-1-yn-1-yl)phosphonate 1a and phenylboronic acid 2a were chosen as model substrates in the presence of 3 mol % Pd(OAc)₂ catalyst, 10 mol % AcOH in 1.0 mL of 1,4-dioxane under argon. A screening of the ligands illustrated that dppb was the best choice for this reaction

Received: May 5, 2015 **Published:** June 11, 2015

Table 1. Optimization of Reaction Conditions^a

0

 $\overline{}$

Note

		HO DEt 1a	$\frac{1}{1,4-\text{dioxane}}$	a, 12h, Ar 3a	v≈O OEt	
entry	catalyst	ligand	acid	solvent	temp (°C)	yield (%)
1	$Pd(OAc)_2$	2,2'-bpy	AcOH	1,4-dioxane	50	0
2	$Pd(OAc)_2$	TMEDA	AcOH	1,4-dioxane	50	trace
3	$Pd(OAc)_2$	dppe	AcOH	1,4-dioxane	50	3
4	$Pd(OAc)_2$	dppp	AcOH	1,4-dioxane	50	21
5	$Pd(OAc)_2$	dppb	AcOH	1,4-dioxane	50	45
6	$Pd(OAc)_2$	dppb	AcOH	1,4-dioxane	60	98
7	$Pd(OAc)_2$	dppb	AcOH	1,4-dioxane	70	80
8	PdCl ₂	dppb	AcOH	1,4-dioxane	60	0
9	$Pd(PPh_3)_4$	dppb	AcOH	1,4-dioxane	60	90
10	$Pd(OAc)_2$	dppb	AcOH	CH ₃ CN	60	0
11	$Pd(OAc)_2$	dppb	AcOH	THF	60	61
12	$Pd(OAc)_2$	dppb	AcOH	toluene	60	55
13	$Pd(OAc)_2$	dppb	AcOH	DMF	60	11
14	$Pd(OAc)_2$	dppb	TfOH	1,4-dioxane	60	9
15	$Pd(OAc)_2$	dppb	PivOH	1,4-dioxane	60	80
16	-	dppb	AcOH	1,4-dioxane	60	0
17	$Pd(OAc)_2$	-	AcOH	1,4-dioxane	60	0
'Reaction condition	ons: 1a (0.2 mmol),	2a (0.24 mmol), acid	(10 mol %), catalyst	t (3 mol %), ligand (6 m	nol %), solvent (1.0 m	L), 12 h, under Ar.

(Table 1, entries 1-5), affording the desired product 3a in 45% yield (Table 1, entry 5). Encouraged by the promising result, the effect of temperature was further examined and the results showed that increasing the temperature to 60 °C could greatly improve the yield up to 98%; however, continuously increasing the temperature to 70 °C led to the yield decrease (Table 1, entries 6 and 7). Subsequently, some other palladium catalysts including $PdCl_2$ and $Pd(PPh_3)_4$ were also evaluated, but no better results were obtained (Table 1, entries 8 and 9). In addition, different solvents such as CH₃CN, THF, toluene, and DMF were evaluated, only providing 3a in 0-61% yields (Table 1, entries 10–13). Some other acids such as TfOH and PivOH were applied in this reaction, but only produced 3a in yields of 9% and 80%, respectively (Table 1, entries 14 and 15). Without $Pd(OAc)_2$ or dppb, the domino reaction could not perform under the optimal reaction conditions (Table 1, entries 16 and 17). With the optimized reaction conditions in hand, the scope of this domino reaction was surveyed (Table 2 and 3). As shown in Table 2, the arylboronic acids bearing various functional groups all worked well under the present conditions to afford the desired 1,2-oxaphosphole-2-oxide derivatives with good to excellent yields, demonstrating that this method is a simple and practical tool for the synthesis of various valuable oxaphospholenes. Thus, many functional groups including methyl, n-butyl, 3,4-OCH₂O, naphthyl, diphenylamino, fluoro, carbonyl, and hydroxyl were all tolerated. Substituted phenylboronic acids with electron-donating methyl, n-butyl, and 3,4methylenedioxy groups reacted smoothly with 1a to provide products 3b-3d in excellent yield (Table 2, entries 2-4). 2-Naphthylboronic acid **2e** and 4-(diphenylamino)phenylboronic acid 2f also efficiently reacted in high yield (3e, 3f, 76%, 78%, respectively, Table 2, entries 5 and 6). Some electron-deficient arylboronic acids 2g-2i could provide the corresponding products 3g-3i in moderate to good yields at a higher temperature of 70 °C (Table 2, entries 7–9). Notably, carbonyl group substituted substrates 2h and 2i containing a reactive aldehyde or ketone unit could also be compatible with the present protocol, giving the desired products 3h and 3i

selectively in a moderate yield without needing any protection of the aldehyde or ketone group. Furthermore, (4-(hydroxymethyl)phenyl)boronic acid **2j** containing a reactive hydroxyl group could also be used in this domino reaction to produce **3j** in 52% yield (Table 2, entry 10).

The versatility of the reaction was further investigated for the domino reaction of different (3-hydroxyprop-1-yn-1-yl)phosphonate substrates with several phenylboronic acid derivatives to afford the corresponding products in moderate to excellent yields. In regard to phosphorus-containing substrate 1, in addition to 1a, ethyl (3-hydroxyprop-1-yn-1yl)(phenyl)phosphinate 1b, diisopropyl (3-hydroxyprop-1-yn-1-yl)phosphonate 1c, and dimethyl (3-hydroxyprop-1-yn-1yl)phosphonate 1d were all suitable reaction partners for this domino reaction, generating desired products 3k-3t in 47-98% yields (Table 3, entries 1-10). In contrast to 1a, 1b, and 1d, 1c afforded a lower yield under similar reaction conditions (Table 3, entries 7–9), probably due to the higher stability of the diisopropyl group adjacent to the phosphorus atom, which blocked the intramolecular nucleophilic substitution reaction. Moreover, we also investigated the steric-hindrance effect of substrate 1 by replacing the hydrogen atom of γ -CH₂ of 1a with a methyl or dimethyl group. Thus, sterically demanding counterparts 1e and 1f afforded the corresponding products $3u^{10}$ and 3v in 80% and 90% yields, respectively, but more severe reaction conditions (70 °C or 24 h) were required, illustrating that steric hindrance is evident in this domino reaction (Table 3, entries 11 and 12).

A proposed mechanism based on these experimental results and previous reports¹¹ are shown in Scheme 2. Initially, oxidative addition of the OH bond of AcOH to a palladium(0), formed *in situ* by reduction of $Pd(OAc)_2$, generated an initial H–Pd–OAc species.^{11d} Subsequently, the syn addition of the H–Pd–OAc species to the triple bond of the alkynylphosphonate 1 led to an alkenylpalladium intermediate **B** with the observed regio- and stereochemistry. The reductive elimination of the intermediate **C** would produce the intermediate **D** and regenerate the Pd(0) species as a catalytically active species. Table 2. Domino Addition-Cyclization of Diethyl (3-Hydroxyprop-1-yn-1-yl)phosphonate with ArylboronicAcids"

		Pd(OAc) ₂ , dppb, AcOH	o
но́ —		1,4-dioxane, 12h, Ar R	~Ŕ=0
1a	2		3 ÖEt
entry	2	3	yield (%)
1	B(OH) ₂ 2a		98 98 0Et
2			0 ==O 98 OEt
3	ⁿ Bu B(OH) ₂ 2c	ⁿ Bu	91 9=0 0Et
4	O D 2d		98 =0 OEt
5	B(OH) ₂ 2e	Jae Contraction of the second	0 76 =0 76 OEt
6	Ph ₂ N-B(OH) ₂ 2f	Ph ₂ N-C 3f	0 2≕O 78 OEt
7	F-B(OH) ₂ 2g	F-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	9 81 ^b OEt
8	OHCB(OH) ₂ 2h		0 9=0 46 ^b OEt
9	O B(OH) ₂ 2i) 2=0 61 ^b OEt
10 H	HOH ₂ C- 2j	HOH ₂ C-	0 5=0 52 ^b OEt

^{*a*}Reaction conditions: **1a** (0.20 mmol), **2a** (0.24 mmol), AcOH (10 mol %), Pd(OAc)₂ (3 mol %), dppb (6 mol %), 1,4-dioxane (1.0 mL), 60 °C, 12 h, under Ar. ^{*b*}70 °C.

Finally, **D** underwent an intramolecular nucleophilic substitution to give the desired product **3** and release one molecular alcohol.

In conclusion, we have developed a simple and efficient palladium-catalyzed domino addition—cyclization for the onestep synthesis of a series of valuable 1,2-oxaphosphole-3-ene 2oxides starting from readily available arylboronic acids with 3hydroxyprop-1-yn-1-yl phosphonates. Mechanistic studies revealed that the domino reaction involved a Michael addition followed by an intramolecular nucleophilic substitution. The described protocol has noticeable advantages, including operational simplicity, mild reaction conditions, remarkable functional group tolerance, and easy workup, and would provide a practical and powerful synthetic tool for the preparation of a variety of this new type of potential biological active organophosphorus heterocycles.

EXPERIMENTAL SECTION

General Information. All reactions were carried out in tubes under argon. All the 3-hydroxyprop-1-yn-1-yl-phosphonates were prepared according to ref 11. All the other reagents were purchased from commercial sources and used without further purification. Column chromatography was performed on silica gel 300–400 mesh. ¹H, ¹³C, and ³¹P NMR spectra were measured on a 500 MHz spectrometer with CDCl₃ as solvent using tetramethylsilane (TMS) as the internal standard and 85% H_3PO_4 as the external standard for ³¹P NMR. All compounds were further characterized by HRMS (FT-ICR-MS or TOF-MS).

General Procedure for the Synthesis of 3a-3v. An oven-dried tube with dppb (0.012 mmol), $Pd(OAc)_2$ (0.006 mmol), and arylboronic acid (0.24 mmol) was evacuated and purged with argon more than three times. A mixture of AcOH (0.020 mmol), 3-hydroxyprop-1-yn-1-yl-phosphonate (0.20 mmol), and 1,4-dioxide (1.0 mL) were added to the tube. The resulting mixture was stirred at the indicated temperature for 12 or 24 h. The product was purified directly by silica gel chromatography using a mixture of petroleum ether and ethyl acetate as eluent.

Spectral Data of the Compounds. 2-*Ethoxy-4-phenyl-2,5dihydro-1,2-oxaphosphole 2-Oxide (3a, New Compound).* Solid, mp 172–174 °C, 43.5 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.36 (m, 5 H), 6.33–6.27 (dt apparent d, *J* = 30.7 Hz, 1 H), 5.09–5.00 (m, 2 H), 4.12–4.06 (dq apparent p, *J* = 7.7, 8.1 Hz, 2 H), 1.30 (t, *J* = 7.0 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.2 (d, *J*_{C-P} = 20.9 Hz), 131.3 (d, *J*_{C-P} = 22.1 Hz), 131.0, 129.1, 125.8, 108.5 (d, *J*_{C-P} = 171.9 Hz), 70.1 (d, *J*_{C-P} = 9.7 Hz), 63.2 (d, *J*_{C-P} = 6.4 Hz), 16.4 (d, *J*_{C-P} = 6.2 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2921, 2851, 1604, 1573, 1497, 1449, 1219, 1194, 1132, 1077, 1039, 995, 970, 888, 801 cm⁻¹. HRMS *m/z* (ESI): calcd for C₁₁H₁₃O₃P [M + H]⁺: 225.0681, found: 225.0670.

2-Ethoxy-4-(p-tolyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3b**, New Compound). Solid, mp 213–215 °C, 46.7 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.32 (m, 2 H), 7.24–7.22 (m, 2 H), 6.35–6.27 (dt, *J* = 31.0, 1.7 Hz, 1 H), 5.12–5.07 (m, 2 H), 4.18–4.13 (m, 2 H), 2.39 (s, 3 H), 1.37 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.1 (d, *J*_{C-P} = 20.8 Hz), 141.5, 129.7, 128.5 (d, *J*_{C-P} = 21.9 Hz), 125.7, 107.3 (d, *J*_{C-P} = 172.4 Hz), 70.1 (d, *J*_{C-P} = 9.4 Hz), 63.0 (d, *J*_{C-P} = 6.4 Hz), 21.3, 16.4 (d, *J*_{C-P} = 6.2 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2917, 2850, 1599, 1541, 1451, 1195, 1132, 1077, 1033, 973, 798 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₂H₁₅O₃P [M + H]⁺: 239.0837, found: 239.0829.

4-(4-Butylphenyl)-2-ethoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3c**, New Compound). Solid, mp 168–169 °C, 50.8 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.35 (m, 2 H), 7.27–7.23 (m, 2 H), 6.35–6.28 (dt, *J* = 31.1, 2.5 Hz, 1 H), 5.16–5.05 (m, 2 H), 4.17–4.13 (m, 2 H), 2.64 (t, *J* = 15.5 Hz, 2 H), 1.63–1.57 (m, 2 H), 1.38–1.35 (m, 5 H), 0.93 (t, *J* = 7.4 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.2 (d, *J*_{C-P} = 20.8 Hz), 146.5, 129.1, 128.7 (d, *J*_{C-P} = 22.1 Hz), 125.8, 107.3 (d, *J*_{C-P} = 172.4 Hz), 70.1 (d, *J*_{C-P} = 9.3 Hz), 63.1 (d, *J*_{C-P} = 6.4 Hz), 35.4, 33.2, 22.2, 16.4 (d, *J*_{C-P} = 6.2 Hz), 138. ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2956, 2927, 2873, 2858, 1600, 1562, 1514, 1218, 1192, 1132, 1071, 1040, 994, 967, 892, 799 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₅H₂₁O₃P [M + H]⁺: 281.1307, found: 281.1301.

4-(Benzo[d][1,3]dioxol-5-yl)-2-ethoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3d**, New Compound). Solid, mp 229–231 °C, 53.0 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃): δ 6.94–6.90 (m, 2 H), 6.85–6.83 (m, 1 H), 6.24–6.18 (dt apparent dd, *J* = 30.5, 0.9 Hz, 1 H), 6.03 (s, 2 H), 5.10–5.00 (m, 2 H), 4.19–4.13 (dq apparent p, *J* = 8.0, 7.3 Hz, 2 H), 1.37 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.5 (d, *J*_{C-P} = 21.5 Hz), 150.0, 148.5, 125.4 (d, *J*_{C-P} = 22.6 Hz), 120.3, 108.6, 106.7 (d, *J*_{C-P} = 172.9 Hz), 106.1, 101.7, 70.0 (d, *J*_{C-P} = 9.2 Hz), 63.1 (d, *J*_{C-P} = 6.4 Hz), 16.4 (d, *J*_{C-P} = 6.1 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2955, 2923, 2852, 1588, 1505, 1494, 1451, 1235, 1196, 1133, 1077, 1029, 968, 881, 832, 799 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₂H₁₃O₃P [M + H]⁺: 269.0579, found: 269.0571.

Table 3. Domino Addition-Cyclization of (3-Hydroxyprop-1-yn-1-yl)phosphonates with Arylboronic Acids^a

Note

^{*a*}Reaction conditions: **1** (0.20 mmol), **2** (0.24 mmol), AcOH (10 mol %), Pd(OAc)₂ (3 mol %), dppb (6 mol %), 1,4-dioxane (1.0 mL), 60 °C, 12 h, under Ar. ^{*b*}70 °C, 12 h. ^{*c*}70 °C, 24 h.

2-Ethoxy-4-(naphthalen-2-yl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3e**, New Compound). Solid, mp 207–209 °C, 41.4 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.90–7.84 (m, 3 H), 7.85–7.79 (m, 1 H), 7.60–7.54 (m, 3 H), 6.52–6.46 (dt, *J* = 30.6, 1.9 Hz, 1 H), 5.30–5.20 (m, 2 H), 4.23–4.17 (m, 2 H), 1.39 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.9 (d, *J*_{C-P} = 20.9 Hz), 134.2, 132.8, 129.0, 128.6, 128.58 (d, *J*_{C-P} = 22.0 Hz), 127.7 (d, *J*_{C-P} = 7.8 Hz), 127.1, 125.5, 123.0, 108.9 (d, *J*_{C-P} = 172.1 Hz), 70.1 (d, *J*_{C-P} = 9.2 Hz), 63.2 (d, *J*_{C-P} = 6.4 Hz), 16.5 (d, *J*_{C-P} = 5.8 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2922, 2851, 1659, 1632, 1589, 1468, 1196, 1132, 1077, 1040, 978, 894 804 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₅H₁₅O₃P [M + H]⁺: 275.0837, found: 275.0829.

4-(4-(Diphenylamino)phenyl)-2-ethoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3f**, New Compound). Solid, mp 216–218 °C, 60.9 mg, 78% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.24–7.17 (m, 6 H), 7.05–7.03 (m, 6 H), 6.94–6.93 (m, 2 H), 6.14–6.07 (dt apparent d, *J* = 31.0 Hz, 1 H), 5.04–4.94 (m, 2 H), 4.07–4.04 (m, 2 H), 1.28 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.6 (d, *J*_{C-P} = 20.9 Hz), 150.3, 146.6, 129.5, 126.8, 125.5, 124.3, 123.6 (d, *J*_{C-P}

22.4 Hz), 121.2, 105.1 (d, J_{C-P} = 173.6 Hz), 70.0 (d, J_{C-P} = 9.8 Hz), 63.0 (d, $J_{C-P} = 6.4$ Hz), 16.4 (d, $J_{C-P} = 6.1$ Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 45. IR (film) v_{max} : 2923, 2851, 1590, 1509, 1488, 1282, 1195, 1132, 1077, 1041, 1000, 968, 887, 800 cm⁻¹. HRMS m/z(ESI): calcd for C₂₃H₂₂NO₃P [M + H]⁺: 392.1416, found: 392.1406. 2-Ethoxy-4-(4-fluorophenyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (3g, New Compound). Solid, mp 197-198 °C, 39.0 mg, 81% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.36 (m, 2 H), 7.07-7.04 (m, 2 H), 6.28–6.22 (dt apparent d, J = 30.4 Hz, 1 H), 5.03–5.00 (m, 2 H), 4.11–4.06 (m, 2 H), 1.29 (t, J = 6.9 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.1 (d, J_{C-F} = 252.9 Hz), 157.0 (d, J_{C-P} = 21.0 Hz), 127.9 (d, J_{C-F} = 8.3 Hz), 127.5 (dd, J_{C-F} = 22.4 Hz, J_{C-P} = 3.4 Hz), 116.3 (d, J_{C-F} = 22.4 Hz), 108.3 (d, J_{C-P} = 172.0 Hz), 69.9 (d, $J_{C-P} = 9.2 \text{ Hz}$), 63.2 (d, $J_{C-P} = 6.5 \text{ Hz}$), 16.4 (d, $J_{C-P} = 5.6 \text{ Hz}$). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) v_{max} : 2923, 2853, 1607, 1510, 1453, 1236, 1194, 1163, 1132, 1077, 1036, 996, 969, 889, 799 cm⁻¹. HRMS m/z (ESI): calcd for C₁₁H₁₂FO₃P [M + H]⁺: 243.0586, found: 243.0579.

Scheme 2. Plausible Mechanism

4-(2-Ethoxy-2-oxido-2,5-dihydro-1,2-oxaphosphol-4-yl)benzaldehyde (**3h**, New Compound). Wax solid, 23.2 mg, 46% yield. ¹H NMR (500 MHz, CDCl₃): δ 10.00 (s, 1 H), 7.89–7.88 (m, 2 H), 7.54–7.52 (m, 2 H), 6.50–6.44 (dt, *J* = 29.9, 2.1 Hz, 1 H), 5.12–5.03 (m, 2 H), 4.18–4.12 (m, 2 H), 1.32 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 191.1, 156.6 (d, *J*_{C-P} = 21.1 Hz), 137.7, 136.7 (d, *J*_{C-P} = 22.0 Hz), 130.3, 126.6, 112.2 (d, *J*_{C-P} = 170.9 Hz), 69.9 (d, *J*_{C-P} = 9.1 Hz), 63.6 (d, *J*_{C-P} = 6.5 Hz), 16.5 (d, *J*_{C-P} = 5.8 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 42. IR (film) v_{max} : 2923, 2852, 1701, 1659, 1574, 1462, 1367, 1196, 1132, 1077, 1041, 973, 890, 801 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₂H₁₃O₄P [M + Na]⁺: 275.0449, found: 275.0453.

1-(4-(2-Ethoxy-2-oxido-2,5-dihydro-1,2-oxaphosphol-4-yl)phenyl)ethanone (**3i**, New Compound). Solid, mp 231–232 °C, 32.5 mg, 61% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.95–7.94 (m, 2 H), 7.47–7.46 (m, 2 H), 6.46–6.40 (dt, *J* = 30.2, 1.9 Hz, 1 H), 5.12–5.02 (m, 2 H), 4.17–4.11 (m, 2 H), 2.56 (s, 3 H), 1.32 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 197.0, 156.8 (d, *J*_{C-P} = 21.3 Hz), 138.6, 135.4 (d, *J*_{C-P} = 22.0 Hz), 129.0, 126.2, 111.4 (d, *J*_{C-P} = 171.1 Hz), 69.9 (d, *J*_{C-P} = 9.1 Hz), 63.5 (d, *J*_{C-P} = 6.6 Hz), 26.7, 16.5 (d, *J*_{C-P} = 6.2 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 43. IR (film) v_{max} : 2955, 2924, 2853, 1683, 1652, 1600, 1455, 1408, 1361, 1267, 1196, 1132, 1077, 1040, 973, 885, 802 cm⁻¹. HRMS *m/z* (ESI): calcd for C₁₃H₁₅O₄P [M + H]⁺: 267.0786, found: 267.0777.

2-Ethoxy-4-(4-hydroxyphenyl)-2,5-dihydro-1,2-oxaphosphole 2oxide (**3***j*, New Compound). Solid, mp 173–174 °C, 26.0 mg, 52% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.42 (m, 2 H), 7.34–7.32 (m, 2 H), 6.25–6.18 (dt apparent d, *J* = 30.9 Hz, 1 H), 5.03–4.91 (m, 2 H), 4.73 (s, 2 H), 4.16–4.10 (m, 2 H), 1.35 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.0 (d, *J*_{C-P} = 20.9 Hz), 145.0, 129.9 (d, *J*_{C-P} = 22.2 Hz), 127.2, 125.9, 107.7 (d, *J*_{C-P} = 172.4 Hz), 70.1 (d, *J*_{C-P} = 9.6 Hz), 64.1, 63.3 (d, *J*_{C-P} = 6.5 Hz), 16.4 (d, *J*_{C-P} = 6.0 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 44. IR (film) *v*_{max}: 3195, 2955, 2922, 2851, 1659, 1632, 1468, 1411, 1377, 1196, 1132, 1077, 1039, 973, 889, 800 cm⁻¹. HRMS *m/z* (ESI): calcd for C₁₂H₁₅O₄P [M + H]⁺: 255.0786, found: 255.0777.

2,4-Diphenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3k**, New Compound). Solid, mp 139–140 °C, 32.8 mg, 64% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.73–7.70 (m, 2 H), 7.51–7.48 (m, 1 H), 7.43–7.37 (m, 7 H), 6.50–6.43 (dt, *J* = 32.8, 2.0 Hz, 1 H), 5.43–5.39 (m, 1 H), 5.30–5.24 (m, 1 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.8 (d, *J*_{C-P} = 16.1 Hz), 132.7 (d, *J*_{C-P} = 2.7 Hz), 131.8 (d, *J*_{C-P} = 11.4 Hz), 131.2 (d, *J*_{C-P} = 18.2 Hz), 131.0, 130.9 (d, *J*_{C-P} = 141.7 Hz), 129.1, 128.6 (d, *J*_{C-P} = 14.1 Hz), 126.2, 113.5 (d, *J*_{C-P} = 120.6 Hz), 73.7 (d, *J*_{C-P} = 3.1 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 58. IR (film) v_{max} : 2922, 2852, 2355, 1652, 1601, 1573, 1495, 1440, 1346, 1223, 1195, 1132, 1077, 1035, 973, 877, 817 cm⁻¹. HRMS *m/z* (ESI): calcd for C₁₅H₁₃O₂P [M + Na]⁺: 279.0551, found: 279.0554.

2-Phenyl-4-(p-tolyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3***I*, New Compound). Solid, mp 165–167 °C, 53.0 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.81–7.76 (m, 2 H), 7.56–7.55 (m, 1 H), 7.49–7.46 (m, 2 H), 7.39–7.38 (m, 2 H), 7.27–7.24 (m, 2 H), 6.51–6.45 (dt apparent d, *J* = 32.9 Hz, 1 H), 5.48–5.45 (m, 1 H), 5.35–5.32 (m, 1 H), 2.40 (s, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.8 (d, *J*_{C-P} = 16.1 Hz), 141.5, 132.6 (d, *J*_{C-P} = 3.0 Hz), 131.8 (d, *J*_{C-P} = 11.5 Hz), 131.2 (d, *J*_{C-P} = 141.6 Hz), 129.8, 128.5 (d, *J*_{C-P} = 13.9 Hz), 128.4 (d, *J*_{C-P} = 18.2 Hz), 126.1, 112.3 (d, *J*_{C-P} = 121.3 Hz), 73.7 (d, *J*_{C-P} = 3.4 Hz), 21.4. ³¹P NMR (202.5 MHz, CDCl₃): δ 58. IR (film) v_{max} : 2955, 2925, 2854, 1612, 1595, 1515, 1439, 1231, 1181, 1123, 1035, 1000, 971, 877, 800 cm⁻¹. HRMS *m*/z (ESI): calcd for C₁₆H₁₅O₂P [M + H]⁺: 271.0888, found: 271.0879.

4-(4-Fluorophenyl)-2-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3m**, New Compound). Solid, mp 142–145 °C, 39.5 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.81–7.76 (m, 2 H), 7.60–7.56 (m, 1 H), 7.51–7.47 (m, 4 H), 7.16–7.13 (m, 2 H), 6.53– 6.46 (dt, *J* = 32.3, 1.9 Hz, 1 H), 5.47–5.43 (m, 1 H), 5.35–5.29 (m, 1 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.1 (d, *J*_{C-F} = 252.5 Hz), 156.5 (d, *J*_{C-P} = 16.3 Hz), 132.8 (d, *J*_{C-F} = 3.0 Hz), 131.8 (d, *J*_{C-P} = 11.6 Hz), 130.9 (d, *J*_{C-P} = 141.8 Hz), 128.6 (d, *J*_{C-P} = 13.8 Hz), 128.2 (d, *J*_{C-P} = 8.6 Hz), 127.5 (dd, *J*_{C-F} = 18.7, 3.4 Hz), 116.3 (d, *J*_{C-P} = 21.9 Hz), 113.5 (dd, *J*_{C-P} = 120.7 Hz, *J*_{C-F} = 1.5 Hz), 73.6 (d, *J*_{C-P} = 2.9 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 58. IR (film) *v*_{max}: 3057, 2955, 2925, 2864, 1594, 1572, 1496, 1448, 1439, 1238, 1194, 1123, 1035, 1000, 972, 873, 800 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₅H₁₂FO₂P [M + H]⁺: 275.0637, found: 275.0629.

4-(4-Butylphenyl)-2-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3n**, New Compound). Wax solid, 61.2 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.80–7.76 (m, 2 H), 7.57–7.54 (m, 1 H), 7.49–7.47 (m, 2 H), 7.41–7.40 (m, 2 H), 7.27–7.25 (m, 2 H), 6.52–6.45 (dt apparent d, *J* = 32.9 Hz, 1 H), 5.48–5.45 (m, 1 H), 5.35–5.30 (m, 1 H), 2.65 (t, *J* = 7.7 Hz, 2 H), 1.64–1.58 (m, 2 H), 1.40–1.32 (m, 2 H), 0.94 (t, *J* = 7.3 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.8 (d, *J*_{C-P} = 16.1 Hz), 146.5, 132.6 (d, *J*_{C-P} = 2.7 Hz), 131.8 (d, *J*_{C-P} = 11.5 Hz), 131.2 (d, *J*_{C-P} = 141.5 Hz), 129.2, 128.6 (d, *J*_{C-P} = 18.0 Hz, overlapped), 128.5 (d, *J*_{C-P} = 13.9 Hz, overlapped), 126.2, 112.3 (d, *J*_{C-P} = 121.3 Hz), 73.7 (d, *J*_{C-P} = 3.5 Hz), 35.5, 33.3, 22.3, 13.9. ³¹P NMR (202.5 MHz, CDCl₃): δ 58. IR (film) v_{max} : 2922, 2852, 1651, 1594, 1557, 1439, 1384, 1196, 1132, 1077, 1034, 973, 804 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₉H₂₁O₂P [M + H]⁺: 313.1357, found: 313.1349.

4-(Benzo[d][1,3]dioxol-5-yl)-2-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**30**, New Compound). Solid, mp 115–116 °C, 57.4 mg, 96% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.72–7.68 (m, 2 H), 7.50–7.47 (m, 1 H), 7.42–7.38 (m, 2 H), 6.91–6.88 (m, 2 H), 6.79–6.77 (m, 1 H), 6.33–6.26 (dt, *J* = 32.2, 1.9 Hz, 1 H), 5.96 (s, 2H), 5.36–5.32 (m, 1 H), 5.23–5.17 (m, 1 H). ¹³C{¹H} NMR (125 MHz,

CDCl₃): δ 157.2 (d, $J_{C-P} = 16.4$ Hz), 149.9, 148.5, 132.6 (d, $J_{C-P} = 2.7$ Hz), 131.8 (d, $J_{C-P} = 11.2$ Hz), 131.1 (d, $J_{C-P} = 141.8$ Hz), 128.6 (d, $J_{C-P} = 14.1$ Hz), 125.3 (d, $J_{C-P} = 18.8$ Hz), 120.7, 111.6 (d, $J_{C-P} = 121.8$ Hz), 108.6, 106.3, 101.7, 73.6 (d, $J_{C-P} = 3.3$ Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 58. IR (film) v_{max} : 2954, 2921, 2852, 1582, 1506, 1491, 1452, 1230, 1196, 1132, 1077, 1034, 932, 868, 802 cm⁻¹. HRMS m/z (ESI): calcd for C₁₆H₁₃O₄P [M + H]⁺: 301.0630, found: 301.0625.

4-(4-(Diphenylamino)phenyl)-2-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3p**, New Compound). Solid, mp 171–173 °C, 79.6 mg, 94% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.71–7.67 (m, 2 H), 7.47–7.44 (m, 1 H), 7.39–7.36 (m, 2 H), 7.23–7.17 (m, 6 H), 7.05–7.01 (m, 6 H), 6.95–6.94 (m, 2 H), 6.30–6.23 (dt, *J* = 32.9, 1.7 Hz, 1 H), 5.36–5.32 (m, 1 H), 5.23–5.17 (m, 1 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.2 (d, *J*_{C-P} = 16.2 Hz), 150.3, 146.6, 132.5 (d, *J*_{C-P} = 2.7 Hz), 131.7 (d, *J*_{C-P} = 11.3 Hz), 131.4 (d, *J*_{C-P} = 141.0 Hz), 129.5, 128.5 (d, *J*_{C-P} = 13.7 Hz), 127.2, 125.4, 124.2, 123.5 (d, *J*_{C-P} = 18.8 Hz), 121.3, 110.1 (d, *J*_{C-P} = 122.7 Hz), 73.6 (d, *J*_{C-P} = 3.5 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 59. IR (film) v_{max} : 2955, 2921, 2851, 1588, 1511, 1489, 1237, 1196, 1132, 1077, 1034, 973, 876, 802 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₂₇H₂₂NO₂P [M + H]⁺: 424.1466, found: 424.1465.

2-Isopropoxy-4-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3q**, New Compound). Solid, mp 113–115 °C, 22.4 mg, 47% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.36 (m, 5 H), 6.32–6.26 (dt, J = 30.9, 2.0 Hz, 1 H), 5.08–4.99 (m, 2 H), 4.73–4.66 (m, 1 H), 1.31–1.29 (q, 6 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.7 (d, J_{C-P} = 20.9 Hz), 131.4 (d, J_{C-P} = 21.9 Hz), 130.9, 129.1, 125.8, 109.3 (d, J_{C-P} = 172.4 Hz), 72.0 (d, J_{C-P} = 6.4 Hz), 69.9 (d, J_{C-P} = 9.8 Hz), 24.0 (d, J_{C-P} = 3.8 Hz), 23.8 (d, J_{C-P} = 5.3 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 43. IR (film) v_{max} : 2954, 2924, 2853, 1604, 1575, 1498, 1449, 1376, 1255, 1196, 1132, 1105, 1077, 1040, 1006, 997, 971, 884, 811 cm⁻¹. HRMS m/z (ESI): calcd for C₁₂H₁₅O₃P [M + H]⁺: 239.0837, found: 239.0830.

2-Isopropoxy-4-(*p*-tolyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3r**, New Compound). Solid, mp 131–132 °C, 36.3 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.32 (m, 2 H), 7.24–7.22 (m, 2 H), 6.33–6.27 (dt, *J* = 31.0, 1.6 Hz, 1 H), 5.13–5.04 (m, 2 H), 4.79–4.72 (m, 1 H), 2.39 (s, 3 H), 1.38–1.36 (q, 6 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.7 (d, *J*_{C-P} = 20.8 Hz), 141.3, 129.7, 128.6 (d, *J*_{C-P} = 21.9 Hz), 125.7, 108.0 (d, *J*_{C-P} = 173.1 Hz), 71.8 (d, *J*_{C-P} = 6.7 Hz), 69.9 (d, *J*_{C-P} = 9.5 Hz), 24.0 (d, *J*_{C-P} = 3.7 Hz), 23.8 (d, *J*_{C-P} = 5.3 Hz), 21.4. ³¹P NMR (202.5 MHz, CDCl₃): δ 43. IR (film) *v*_{max}: 2955, 2925, 2854, 1612, 1595, 1515, 1439, 1373, 1231, 1195, 1132, 1105, 1077, 1035, 1001, 971, 897, 885, 808 cm⁻¹. HRMS *m/z* (ESI): calcd for C₁₃H₁₇O₃P [M + H]⁺: 253.0994, found: 253.0985.

4-(4-Fluorophenyl)-2-isopropoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3s**, New Compound). Solid, mp 176–179 °C, 29.7 mg, 58% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.35 (m, 2 H), 7.07–7.04 (m, 2 H), 6.27–6.21 (dt apparent d, *J* = 30.4 Hz, 1 H), 5.04–4.96 (m, 2 H), 4.75–4.69 (m, 1 H), 1.32–1.29 (q, 6 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.1 (d, *J*_{C-F} = 252.5 Hz), 156.5 (d, *J*_{C-P} = 21.4 Hz), 127.9 (d, *J*_{C-F} = 8.8 Hz), 127.7 (dd, *J*_{C-F} = 22.6, *J*_{C-P} = 3.6 Hz), 116.3 (d, *J*_{C-P} = 21.9 Hz), 109.3 (d, *J*_{C-P} = 174.0 Hz), 72.1 (d, *J*_{C-P} = 6.4 Hz), 69.8 (d, *J*_{C-P} = 9.2 Hz), 24.1 (d, *J*_{C-P} = 4.2 Hz), 23.8 (d, *J*_{C-P} = 5.4 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 43. IR (film) v_{max} : 2953, 2924, 2853, 1606, 1511, 1461, 1377, 1239, 1195, 1132, 1077, 1042, 998, 972, 886, 803 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₂H₁₄FO₃P [M + H]⁺: 257.0743, found: 257.0723.

2-Methoxy-4-phenyl-2,5-dihydro-1,2-oxaphosphole 2-oxide (**3t**, New Compound). Solid, mp 167–170 °C, 40.0 mg, 95% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.37 (m, 5 H), 6.33–6.27 (dt, *J* = 31.0, 1.8 Hz, 1 H), 5.12–5.01 (m, 2 H), 3.73 (d, *J* = 11.7 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.6 (d, *J*_{C-P} = 20.8 Hz), 131.3 (d, *J*_{C-P} = 21.8 Hz), 131.1, 129.2, 125.9, 108.1 (d, *J*_{C-P} = 171.8 Hz), 70.2 (d, *J*_{C-P} = 9.8 Hz), 53.5 (d, *J*_{C-P} = 6.7 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 45. IR (film) v_{max} : 2923, 2852, 1659, 1602, 1494, 1441, 1367, 1350, 1306, 1195, 1132, 1077, 1041, 1025, 852 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₀H₁₁O₃P [M + H]⁺: 211.0524, found: 211.0518.

2-Ethoxy-5-methyl-4-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3u**, New Compound; Many ¹H and ¹³C NMR Signals Were Split Due to the Presence of (Phosphate) Diastereoisomers in the Sample). Solid, mp 124–125 °C, 38.1 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.31 (m, 5 H), 6.18–6.12 (dt apparent d, J = 30.3 Hz, 1 H), 5.47-5.38 (m, 1 H), 4.18-4.12 (m, 1.1 H), 4.09-4.03 (m, 0.9 H), 1.45–1.43 (d, J = 6.7 Hz, 1.4 H), 1.40–1.39 (d, J = 6.7 Hz, 1.6 H), 1.34–1.31 (t, J = 7.1 Hz, 1.6 H), 1.29–1.27 (t, J = 7.1 Hz, 1.4 H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.00 (d, J_{C-P} = 19.9 Hz), 163.95 (d, J_{C-P} = 19.9 Hz), 132.4 (d, J_{C-P} = 22.2 Hz), 132.3 (d, J_{C-P} = 22.5 Hz), 130.4, 129.0, 126.7 (d, J_{C-P} = 3.3 Hz), 110.2 (d, J_{C-P} = 168.8 Hz), 110.0 (d, J_{C-P} = 170.6 Hz), 78.4 (d, J_{C-P} = 8.2 Hz), 78.0 (d, J_{C-P} = 8.2 Hz), 63.3 (d, J_{C-P} = 6.4 Hz), 63.0 (d, J_{C-P} = 6.4 Hz), 21.5 (d, $J_{C-P} = 1.8$ Hz), 21.0, 16.6 (d, $J_{C-P} = 5.9$ Hz), 16.4 (d, $J_{C-P} = 5.9$ Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 39.8, 39.3. IR (film) v_{max} : 2922, 2852, 1592, 1566, 1492, 1443, 1195, 1133, 1077, 1043, 972, 899, 856 cm⁻¹. HRMS m/z (ESI): calcd for C₁₂H₁₅O₃P [M + H]⁺: 239.0837, found: 239.0828.

2-Ethoxy-5,5-dimethyl-4-phenyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (**3v**, New Compound). Solid, mp 140–141 °C, 45.4 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.32 (m, 3 H), 7.28–7.26 (m, 2 H), 5.96–5.90 (dt apparent d, *J* = 30.1 Hz, 1 H), 4.15–4.09 (m, 2 H), 1.55 (d, *J* = 5.9 Hz, 6 H), 1.31 (t, *J* = 7.0 Hz, 3 H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.0 (d, *J*_{C-P} = 17.5 Hz), 134.1 (d, *J*_{C-P} = 22.6 Hz), 129.4, 128.6, 127.3, 113.1 (d, *J*_{C-P} = 165.3 Hz), 87.4 (d, *J*_{C-P} = 7.6 Hz), 62.9 (d, *J*_{C-P} = 6.4 Hz), 27.8 (d, *J*_{C-P} = 3.1 Hz), 27.3 (d, *J*_{C-P} = 2.4 Hz), 16.6 (d, *J*_{C-P} = 5.6 Hz). ³¹P NMR (202.5 MHz, CDCl₃): δ 35. IR (film) v_{max} : 2951, 2923, 2851, 1595, 1572, 1497, 1448, 1220, 1195, 1132, 1077, 1043, 1006, 996, 911, 866, 821 cm⁻¹. HRMS *m*/*z* (ESI): calcd for C₁₃H₁₇O₃P [M + H]⁺: 253.0994, found: 253.0984.

ASSOCIATED CONTENT

S Supporting Information

Copies of ¹H NMR, ³¹P NMR and ¹³C NMR spectrum. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b00999.

AUTHOR INFORMATION

Corresponding Author

*E-mail: gaoxingchem@xmu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Chinese National Natural Science Foundation (21202135), the Natural Science Foundation of Fujian Province of China (No. 2013J05031) and the National Basic Research Program of China (2012CB821600).

REFERENCES

 Selected publications: (a) Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366. (b) Topics in Heterocyclic Chemistry: Phosphorus Heterocycles II; Bansal, R. K., Ed.; Springer: Berlin, 2010; Vol. 21. (c) Robinson, T. P.; Cowley, M. J.; Scheschkewitz, D.; Goicoechea, J. M. Angew. Chem., Int. Ed. 2015, 54, 683. (d) Chen, X.; Alidori, S.; Puschmann, F. F.; Santiso-Quinones, G.; Benkő, Z.; Li, Z. S.; Becker, G.; Grützmacher, H.-F.; Grützmacher, H. Angew. Chem., Int. Ed. 2014, 53, 1641. (e) Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Angew. Chem., Int. Ed. 2014, 53, 7639. (f) Yamamura, M.; Saito, T.; Nabeshima, T. J. Am. Chem. Soc. 2014, 136, 14299. (g) Gilard, V.; Martino, R.; Malet-Martino, M.; Niemeyer, U.; Pohl, J. J. Med. Chem. 1999, 42, 2542. (h) Mader, M. M.; Bartlett, P. A. Chem. Rev. 1997, 97, 1281. (i) Kumar, A.; Sharmar, P. V.; Gurram, K.; Rane, N. Bioorg. Med. Chem. Lett. 2006, 16, 2484. (j) Mathey, F. Phosphorous-Carbon

The Journal of Organic Chemistry

Heterocyclic Chemistry: The Rise of a New Domain; Pergamon: Amsterdam, 2001.

(2) (a) Syam, P. G.; Hari, B. B.; Naga, R. C.; Reddy, C. D.; Reddy, S. Synth. Commun. **2009**, 39, 1310. (b) Haranath, P.; Anasuyamma, U.; Raju, C. N.; Reddy, C. D.; Reddy, C. S. J. Heterocycl. Chem. **2005**, 42, 775.

(3) Vanya, K.; Asya, D.; Karamfil, K.; Dobromir, E. *Genetika* **2009**, *41*, 179.

(4) Belakhov, V. V.; Shneider, M. A.; Komarov, E. V.; Ionin, B. I.;
Shtilbans, E. B.; Rachkovskaya, L. A. *Khim.-Farm. Zh.* **1988**, *22*, 719.
(5) (a) Jung, H. H.; Lee, B. S.; Lee, S. Y.; Lee, H. Y. *Tetrahedron Lett.* **2003**, *44*, 5811. (b) Mualla, M.; Roger, S. *Phosphorus, Sulfur Silicon Relat. Elem.* **1990**, *47*, 15. (c) Macomber, R. S.; Guttadauro, M.;
Pinhas, A. R.; Bauer, J. K. J. Org. Chem. **2001**, *66*, 1480. (d) Minami, T.; Motoyoshiya, J. Synthesis **1992**, 333. (e) Rardon, D.; Macomber, R. S. J. Org. Chem. **1990**, *55*, 1493. (f) Miles, J. A.; Grabiak, R. C.; Cummins, C. J. Org. Chem. **1982**, *47*, 1677.

(6) (a) Hanessian, S.; Rogel, O. J. Org. Chem. 2000, 65, 2667.
(b) Hanessian, S.; Rogel, O. Bioorg. Med. Chem. Lett. 1999, 9, 2441.
(c) Harvey, T. C.; Simiand, C.; Weiler, L.; Withers, S. G. J. Org. Chem. 1997, 62, 6722. (d) Darrow, J. W.; Drueckhammer, D. G. J. Org. Chem. 1994, 59, 2976. (e) Molin, H.; Noren, J. O.; Claesson, A. Carbohydr. Res. 1989, 194, 209. (f) Wroblewski, A. E. Carbohydr. Res. 1984, 125, C1-C4. (g) Wroblewski, A. E. Tetrahedron 1986, 42, 3595. (h) Gupte, R.; Siddam, A.; Lu, Y.; Li, W.; Fujiwara, Y.; Panupinthu, N.; Pham, T.-C.; Baker, D. L.; Parrill, A. L.; Gotoh, M.; Kimiko, M.-M.; Kobayashi, S.; Mills, G. B.; Tigyi, G.; Miller, D. D. Bioorg. Med. Chem. Lett. 2010, 20, 7525.

(7) (a) Niemi, T. A.; Coe, P. L.; Till, S. J. J. Chem. Soc., Perkin Trans.
1 2000, 1519. (b) Macomber, R. S.; Kennedy, E. R. J. Org. Chem.
1976, 41, 3191. (c) Yu, F.; Lian, X. D.; Zhao, J. B.; Yu, Y. H.; Ma, S. M.
J. Org. Chem. 2009, 74, 1130. (d) Xin, N.; Ma, S. M. Eur. J. Org. Chem.
2012, 3806. (e) Li, P.; Liu, Z.-J.; Liu, J.-T. Tetrahedron 2010, 66, 9729.
(f) Jang, W. B.; Oh, D. Y.; Lee, C. W. Tetrahedron Lett. 2000, 41, 5103.
(g) Yu, F.; Lian, X. D.; Ma, S. M. Org. Lett. 2007, 9, 1703.

(8) (a) Hu, G. B.; Gao, Y. X.; Zhao, Y. F. Org. Lett. 2014, 16, 4464.
(b) Wang, T.; Sang, S.; Liu, L.; Qiao, H. W.; Gao, Y. X.; Zhao, Y. F. J. Org. Chem. 2014, 79, 608. (c) Wu, Y. L.; Liu, L.; Yang, K. L.; Xu, P. X.; Gao, Y. X.; Zhao, Y. F. J. Org. Chem. 2014, 79, 8118. (d) Xu, W. T.; Hu, G. B.; Xu, P. X.; Gao, Y. X.; Yin, Y. W.; Zhao, Y. F. Adv. Synth. Catal. 2012, 354, 969. (e) Hu, G. B.; Chen, W. Z.; Fu, T. T.; Peng, Z. M.; Qiao, H. W.; Gao, Y. X.; Zhao, Y. F. Org. Lett. 2013, 15, 5362.

(9) Gao, Y. X.; Wang, G.; Chen, L.; Xu, P. X.; Zhao, Y. F.; Zhou, Y. B.; Han, L.-B. J. Am. Chem. Soc. **2009**, 131, 7956.

(10) Two stereoisomers were generated with a ratio of 1:0.83 determined by ³¹P NMR analysis and were not separated by column chromatography on silica gel due to their very similar polarity.

(11) (a) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083. (b)
Suzuki, A. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; VCH: Weinheim, 1988; p 49. (c) Lindhardt, A. T.;
Mette Louise, H. M.; Troels, S. Angew. Chem., Int. Ed. 2008, 47, 2668.
(d) Chang, H. O.; Hyung, H. J.; Ki, S. K.; Nakjoong, K. Angew. Chem.,
Int. Ed. 2003, 42, 805.

Note